6,593 research outputs found

    Dynamical Friction in a Gas: The Supersonic Case

    Full text link
    Any gravitating mass traversing a relatively sparse gas experiences a retarding force created by its disturbance of the surrounding medium. In a previous contribution (Lee & Stahler 2011), we determined this dynamical friction force when the object's velocity was subsonic. We now extend our analysis to the supersonic regime. As before, we consider small perturbations created in the gas far from the gravitating object, and thereby obtain the net influx of linear momentum over a large, bounding surface. Various terms in the perturbation series formally diverge, necessitating an approximate treatment of the flow streamlines. Nevertheless, we are able to derive exactly the force itself. As in the subsonic case, we find that F=Mdot*V, where Mdot is the rate of mass accretion onto the object and V its instantaneous velocity with respect to distant background gas. Our force law holds even when the object is porous (e.g., a galaxy) or is actually expelling mass in a wind. Quantitatively, the force in the supersonic regime is less than that derived analytically by previous researchers, and is also less than was found in numerical simulations through the mid 1990s. We urge simulators to revisit the problem using modern numerical techniques. Assuming our result to be correct, it is applicable to many fields of astrophysics, ranging from exoplanet studies to galactic dynamics.Comment: Accepted to A&A. Comments from the community welcomed. 21 pages, 12 figure

    Wireless tools for neuromodulation

    Get PDF
    Epilepsy is a spectrum of diseases characterized by recurrent seizures. It is estimated that 50 million individuals worldwide are affected and 30% of cases are medically refractory or drug resistant. Vagus nerve stimulation (VNS) and deep brain stimulation (DBS) are the only FDA approved device based therapies. Neither therapy offers complete seizure freedom in a majority of users. Novel methodologies are needed to better understand mechanisms and chronic nature of epilepsy. Most tools for neuromodulation in rodents are tethered. The few wireless devices use batteries or are inductively powered. The tether restricts movement, limits behavioral tests, and increases the risk of infection. Batteries are large and heavy with a limited lifetime. Inductive powering suffers from rapid efficiency drops due to alignment mismatches and increased distances. Miniature wireless tools that offer behavioral freedom, data acquisition, and stimulation are needed. This dissertation presents a platform of electrical, optical and radiofrequency (RF) technologies for device based neuromodulation. The platform can be configured with features including: two channels differential recording, one channel electrical stimulation, and one channel optical stimulation. Typical device operation consumes less than 4 mW. The analog front end has a bandwidth of 0.7 Hz - 1 kHz and a gain of 60 dB, and the constant current driver provides biphasic electrical stimulation. For use with optogenetics, the deep brain optical stimulation module provides 27 mW/mm2 of blue light (473 nm) with 21.01 mA. Pairing of stimulating and recording technologies allows closed-loop operation. A wireless powering cage is designed using the resonantly coupled filter energy transfer (RCFET) methodology. RF energy is coupled through magnetic resonance. The cage has a PTE ranging from 1.8-6.28% for a volume of 11 x 11 x 11 in3. This is sufficient to chronically house subjects. The technologies are validated through various in vivo preparations. The tools are designed to study epilepsy, SUDEP, and urinary incontinence but can be configured for other studies. The broad application of these technologies can enable the scientific community to better study chronic diseases and closed-loop therapies

    Concurrent Image Processing Executive (CIPE)

    Get PDF
    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are discussed. The target machine for this software is a JPL/Caltech Mark IIIfp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules; (1) user interface, (2) host-resident executive, (3) hypercube-resident executive, and (4) application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube a data management method which distributes, redistributes, and tracks data set information was implemented

    Observing the Effects of Inbreeding and Local Adaptation on Fitness in Westslope Cutthroat Trout Populations in a Common Garden

    Get PDF
    Montana Westslope cutthroat trout (Oncorhynchus clarkii lewisi, WCT) populations, particularly those east of the continental divide, are predominantly small and isolated from one other. Small population size inevitably leads to a more inbred population and can lead to lowered fitness (inbreeding depression). Isolated populations may experience local adaptation, which increases the fitness of a population within its native habitat. If inbreeding is the greatest threat to a population, introducing individuals from another population might be the best management decision. However, if local adaptation has also occurred, introducing new individuals might lower the fitness of the population. Our goal was to evaluate the relative importance of inbreeding and local adaptation on fitness in several WCT populations. This study combines eggs from several populations of WCT into several different natural habitats. Remote-site incubators were used to introduce eggs to six sites over four years in the Cherry Creek drainage. Each year a colder and warmer site was selected to test for the potential of local adaptation to stream temperature. Electrofishing was used to sample above and below introduction sites one, two, and three years after eggs were introduced. DNA sequencing of microsatellite loci in parents and offspring were then used to determine the population of origin of 511 offspring sampled in Cherry Creek in 2008 and will ultimately be used for over 750 offspring sampled in 2007 and 2009. Preliminary results suggest that a colder common habitat produces larger differences in relative fitness than a warmer habitat

    Air Insufflation of the Stomach Following Laparoscopic Pyloromyotomy May Not Detect Perforation

    Get PDF
    Air insufflation of the stomach during laparoscopic pyloromyotomy does not reliably rule-out perforation

    Nonlinear resonant behavior of the dispersive readout scheme for a superconducting flux qubit

    Full text link
    A nonlinear resonant circuit comprising a SQUID magnetometer and a parallel capacitor is studied as a readout scheme for a persistent-current (PC) qubit. The flux state of the qubit is detected as a change in the Josephson inductance of the SQUID magnetometer, which in turn mediates a shift in the resonance frequency of the readout circuit. The nonlinearity and resulting hysteresis in the resonant behavior are characterized as a function of the power of both the input drive and the associated resonance peak response. Numerical simulations based on a phenomenological circuit model are presented which display the features of the observed nonlinearity.Comment: 9 pages, 9 figure

    Coil-Assisted Retrograde Transvenous Obliteration (CARTO) for the Treatment of Portal Hypertensive Variceal Bleeding: Preliminary Results.

    Get PDF
    ObjectivesTo describe the technical feasibility, safety, and clinical outcomes of coil-assisted retrograde transvenous obliteration (CARTO) in treating portal hypertensive non-esophageal variceal hemorrhage.MethodsFrom October 2012 to December 2013, 20 patients who received CARTO for the treatment of portal hypertensive non-esophageal variceal bleeding were retrospectively evaluated. All 20 patients had at least 6-month follow-up. All patients had detachable coils placed to occlude the efferent shunt and retrograde gelfoam embolization to achieve complete thrombosis/obliteration of varices. Technical success, clinical success, rebleeding, and complications were evaluated at follow-up.ResultsA 100% technical success rate (defined as achieving complete occlusion of efferent shunt with complete thrombosis/obliteration of bleeding varices and/or stopping variceal bleeding) was demonstrated in all 20 patients. Clinical success rate (defined as no variceal rebleeding) was 100%. Follow-up computed tomography after CARTO demonstrated decrease in size with complete thrombosis and disappearance of the varices in all 20 patients. Thirteen out of the 20 had endoscopic confirmation of resolution of varices. Minor post-CARTO complications, including worsening of esophageal varices (not bleeding) and worsening of ascites/hydrothorax, were noted in 5 patients (25%). One patient passed away at 24 days after the CARTO due to systemic and portal venous thrombosis and multi-organ failure. Otherwise, no major complication was noted. No variceal rebleeding was noted in all 20 patients during mean follow-up of 384±154 days.ConclusionsCARTO appears to be a technically feasible and safe alternative to traditional balloon-occluded retrograde transvenous obliteration or transjugular intrahepatic portosystemic shunt, with excellent clinical outcomes in treating portal hypertensive non-esophageal variceal bleeding
    • …
    corecore